Format

Send to:

Choose Destination
See comment in PubMed Commons below
Cancer Lett. 2006 May 18;236(2):198-212. Epub 2005 Jul 26.

Inhibition of breast cancer cell growth and induction of cell death by 1,1-bis(3'-indolyl)methane (DIM) and 5,5'-dibromoDIM.

Author information

  • 1Department of Veterinary Physiology and Pharmacology, Texas A&M University, 4466 TAMU, College Station, TX 77843-4466, USA.

Abstract

1,1-Bis(3'-indolyl)methane (DIM) and the 5,5'-dibromo ring substituted DIM (5,5'-diBrDIM) inhibited growth of MCF-7 and MDA-MB-231 breast cancer cells, and IC50 values were 10-20 and 1-5 microM, respectively, in both cell lines. DIM and 5,5'-diBrDIM did not induce p21 or p27 protein levels or alter expression of Sp1 or Sp3 proteins in either cell line. In contrast, 10 microM 5,5'-diBrDIM downregulated cyclin D1 protein in MCF-7 and MDA-MB-231 cells 12 and 24 h after treatment. DIM (20 microM) also decreased cyclin D1 in MCF-7 (24 h) and MDA-MB-231 (12 h), and the DIM/5,5'-diBrDIM-induced degradation of cyclin D1 was blocked by the proteasome inhibitor MG132. Both DIM and 5,5'-diBrDIM induced apoptosis in MCF-7 cells and this was accompanied by decreased Bcl-2, release of mitochondrial cytochrome c, and decreased mitochondrial membrane potential as determined by the red/green fluorescence of JC-1. DIM and 5,5'-diBrDIM induced extensive necrosis in MDA-MB-231 cells; however, this was accompanied by decreased mitochondrial membrane potential primarily in cells treated with 5,5'-diBrDIM but not DIM. Thus, DIM and 5,5'-diBrDIM induce cell death in MCF-7 and MDA-MB-231 cells by overlapping and different pathways, and the ring-substituted DIM represents a novel class of uncharged mitochondrial poisons that inhibit breast cancer cell and tumor growth.

PMID:
16051428
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk