Format

Send to

Choose Destination
See comment in PubMed Commons below
Biochem Soc Trans. 2005 Aug;33(Pt 4):840-4.

Structure-function relationships in mitochondrial complex I of the strictly aerobic yeast Yarrowia lipolytica.

Author information

  • 1Universität Frankfurt, Zentrum der Biologischen Chemie, Molekulare Bioenergetik, Theodor-Stern-Kai 7, Haus 26, D-60590 Frankfurt am Main, Germany. brandt@zbc.kgu.de

Abstract

The obligate aerobic yeast Yarrowia lipolytica has been established as a powerful model system for the analysis of mitochondrial complex I. Using a combination of genomic and proteomic approaches, a total of 37 subunits was identified. Several of the accessory subunits are predicted to be STMD (single transmembrane domain) proteins. Site-directed mutagenesis of Y. lipolytica complex I has provided strong evidence that a significant part of the ubiquinone reducing catalytic core resides in the 49 kDa and PSST subunits and can be modelled using X-ray structures of distantly related enzymes, i.e. water-soluble [NiFe] hydrogenases from Desulfovibrio spp. Iron-sulphur cluster N2, which is related to the hydrogenase proximal cluster, is directly involved in quinone reduction. Mutagenesis of His226 and Arg141 of the 49 kDa subunit provided detailed insight into the structure-function relationships around cluster N2. Overall, our findings suggest that proton pumping by complex I employs long-range conformational interactions and ubiquinone intermediates play a critical role in this mechanism.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk