Display Settings:


Send to:

Choose Destination
See comment in PubMed Commons below
Am J Physiol Lung Cell Mol Physiol. 2005 Dec;289(6):L971-9. Epub 2005 Jul 22.

Beta-catenin regulates differentiation of respiratory epithelial cells in vivo.

Author information

  • 1Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave., Cincinnati, OH 45229-3039, USA. michael.mucenski@cchmc.org


An activated form of beta-catenin [Catnb(Delta(ex3))] was expressed in respiratory epithelial cells of the developing lung. Although morphogenesis was not altered at birth, air space enlargement and epithelial cell dysplasia were observed in the early postnatal period and persisted into adulthood. The Catnb(Delta(ex3)) protein caused squamous, cuboidal, and goblet cell dysplasia in intrapulmonary conducting airways. Atypical epithelial cells that stained for surfactant pro protein C (pro-SP-C) and had morphological characteristics of alveolar type II cells were observed in bronchioles of the transgenic mice. Catnb(Delta(ex3)) inhibited expression of Foxa2 and caused goblet cell hyperplasia associated with increased staining for mucins and the MUC5A/C protein. In vitro, both wild type and activated beta-catenin negatively regulated the expression of the Foxa2 promoter. Catnb(Delta(ex3)) also caused pulmonary tumors in adult mice. Activation of beta-catenin caused ectopic differentiation of alveolar type II-like cells in conducting airways, goblet cell hyperplasia, and air space enlargement, demonstrating a critical role for the Wnt/beta-catenin signal transduction pathway in the differentiation of the respiratory epithelium in the postnatal lung.

[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Icon for HighWire
    Loading ...
    Write to the Help Desk