Format

Send to:

Choose Destination
See comment in PubMed Commons below
Endocrinology. 2005 Nov;146(11):4609-18. Epub 2005 Jul 21.

Insulin-like growth factor-I receptor signaling in tamoxifen-resistant breast cancer: a supporting role to the epidermal growth factor receptor.

Author information

  • 1Tenovus Centre for Cancer Research, Welsh School of Pharmacy, Cardiff University, Redwood Building, King Edward VII Avenue, Cardiff CF10 3XF, United Kingdom.

Abstract

There is considerable evidence that the epidermal growth factor receptor (EGFR) and IGF-I receptor (IGF-IR) cross-talk in breast cancer cells. In the present study, we have examined whether EGFR/IGF-IR cross-talk exists in EGFR-positive tamoxifen-resistant variants of MCF-7 (Tam-R) and T47D (T47D-R) breast cancer cell lines. Although Tam-R cells expressed reduced IGF-IR protein levels compared with their wild-type MCF-7 counterparts, phosphorylated IGF-IR protein levels were equivalent in the two cell lines under basal growth conditions, possibly as a consequence of increased IGF-II expression in Tam-R cells. IGF-II activated both IGF-IR and EGFR in Tam-R cells, whereas only activation of IGF-IR was observed in wild-type cells. In contrast, epidermal growth factor rapidly induced EGFR, but not IGF-IR, phosphorylation in Tam-R cells. IGF-II promoted direct association of c-SRC with IGF-IR, phosphorylated c-SRC, and increased EGFR phosphorylation at tyrosine 845, a c-SRC-dependent phosphorylation site. Pretreatment with either AG1024 (IGF-IR-specific inhibitor) or an IGF-II neutralizing antibody inhibited basal IGF-IR, c-SRC, and EGFR phosphorylation, and AG1024 significantly reduced Tam-R basal cell growth. The c-SRC inhibitor SU6656 also inhibited growth, reduced basal and IGF-II-induced c-SRC and EGFR phosphorylation, and blocked EGFR activation by TGFalpha. Similarly, in T47D-R cells, AG1024 and SU6656 inhibited basal and IGF-II-induced phosphorylation of c-SRC and EGFR, and SU6656 reduced TGFalpha-induced EGFR activity. These results suggest the existence of a unidirectional IGF-IR/EGFR cross-talk mechanism whereby IGF-II, acting through the IGF-IR, regulates basal and ligand-activated EGFR signaling and cell proliferation in a c-SRC-dependent manner in Tam-R cells. This cross-talk between IGF-IR and EGFR is not unique to Tam-R cells because this mechanism is also active in a tamoxifen-resistant T47D-R cell line.

PMID:
16037379
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Atypon
    Loading ...
    Write to the Help Desk