Format

Send to

Choose Destination
See comment in PubMed Commons below
J Mol Evol. 2005 Sep;61(3):341-50. Epub 2005 Jul 18.

Signs of ancient and modern exon-shuffling are correlated to the distribution of ancient and modern domains along proteins.

Author information

  • 1Ludwig Institute for Cancer Research, Sao Paulo Branch, CEP, São Paulo, SP, 01509-010, Brazil.

Abstract

Exon-shuffling is an important mechanism accounting for the origin of many new proteins in eukaryotes. However, its role in the creation of proteins in the ancestor of prokaryotes and eukaryotes is still debatable. Excess of symmetric exons is thought to represent evidence for exon-shuffling since the exchange of exons flanked by introns of the same phase does not disrupt the reading frame of the host gene. In this report, we found that there is a significant correlation between symmetric units of shuffling and the age of protein domains. Ancient domains, present in both prokaryotes and eukaryotes, are more frequently bounded by phase 0 introns and their distribution is biased towards the central part of proteins. Modern domains are more frequently bounded by phase 1 introns and are present predominantly at the ends of proteins. We propose a model in which shuffling of ancient domains mainly flanked by phase 0 introns was important in the ancestor of eukaryotes and prokaryotes, during the creation of the central part of proteins. Shuffling of modern domains, predominantly flanked by phase 1 introns, accounted for the origin of the extremities of proteins during eukaryotic evolution.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Springer
    Loading ...
    Write to the Help Desk