Send to:

Choose Destination
See comment in PubMed Commons below
Clin Cancer Res. 2005 Jul 15;11(14):5121-7.

Evaluation of radiation-induced oral mucositis by optical coherence tomography.

Author information

  • 1Radiation Oncology Branch, National Cancer Institute, Bethesda, Maryland 20892, USA.



Optical coherence tomography (OCT) imaging was evaluated to determine if radiation-induced mucosal damage could be noninvasively monitored in real time and correlated with histopathologic findings.


Female C3H mice, ages 7 to 9 weeks, four per group, were immobilized in a custom-made Lucite jig and received 0, 15, 22.5, and 25 Gy in a single fraction to their oral cavity. OCT images were acquired of proximal, middle, and distal aspects of the dorsum of the tongue on days 0, 1, 3, 5, and 7 post-irradiation. Animals were sacrificed on day 7 and samples taken for histologic evaluation. OCT images were visually examined and also quantified by image analysis and compared with histologic findings.


Tongues removed 7 days post-irradiation showed no visible damage; however, upon staining with toluidine blue, ulcers at the base of the tongue became visible (100% for 25 Gy, 75% after 22.5 Gy, and 0% after 15 Gy). Visual inspection of OCT images qualitatively compared with histologic findings and quantitative image analysis of the OCT images (effective light penetration depth) revealed significant changes 7 days post-irradiation compared with unirradiated controls for the base of the tongue.


OCT allows for direct noninvasive real-time acquisition of digitally archivable images of oral mucosa and can detect radiation-induced changes in the mucosa before visual manifestation. OCT may be a useful technique to quantify subclinical radiation-induced mucosal injury in experimental chemoradiation clinical trials.

[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk