Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Mol Biol Cell. 2005 Oct;16(10):4557-71. Epub 2005 Jul 19.

Galpha subunit Gpa2 recruits kelch repeat subunits that inhibit receptor-G protein coupling during cAMP-induced dimorphic transitions in Saccharomyces cerevisiae.

Author information

  • 1Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA.

Abstract

All eukaryotic cells sense extracellular stimuli and activate intracellular signaling cascades via G protein-coupled receptors (GPCR) and associated heterotrimeric G proteins. The Saccharomyces cerevisiae GPCR Gpr1 and associated Galpha subunit Gpa2 sense extracellular carbon sources (including glucose) to govern filamentous growth. In contrast to conventional Galpha subunits, Gpa2 forms an atypical G protein complex with the kelch repeat Gbeta mimic proteins Gpb1 and Gpb2. Gpb1/2 negatively regulate cAMP signaling by inhibiting Gpa2 and an as yet unidentified target. Here we show that Gpa2 requires lipid modifications of its N-terminus for membrane localization but association with the Gpr1 receptor or Gpb1/2 subunits is dispensable for membrane targeting. Instead, Gpa2 promotes membrane localization of its associated Gbeta mimic subunit Gpb2. We also show that the Gpa2 N-terminus binds both to Gpb2 and to the C-terminal tail of the Gpr1 receptor and that Gpb1/2 binding interferes with Gpr1 receptor coupling to Gpa2. Our studies invoke novel mechanisms involving GPCR-G protein modules that may be conserved in multicellular eukaryotes.

PMID:
16030250
[PubMed - indexed for MEDLINE]
PMCID:
PMC1237064
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk