Format

Send to

Choose Destination
See comment in PubMed Commons below
Plant Mol Biol. 2005 May;58(1):15-25.

Differential expression of genes encoding 1-aminocyclopropane-1-carboxylate synthase in Arabidopsis during hypoxia.

Author information

  • 1Department of Biological Sciences, University of Iowa, Iowa City, Iowa 52242, USA.

Abstract

Ethylene plays an essential role in response to hypoxic stress in plants. In most plant species, 1-aminocyclopropane-1-carboxylate synthase (ACS) is the key enzyme that regulates the production of ethylene. We examined the expression of ACS genes in Arabidopsis during hypoxia. Our data showed that the expression of 4 of the 12 Arabidopsis ACS genes, ACS2, ACS6, ACS7, and ACS9, is induced during hypoxia with three distinct patterns. The hypoxic induction of ACS9 is inhibited by aminooxy acetic acid, an inhibitor of ethylene biosynthesis. In addition, the hypoxic induction of ACS9 is also reduced in etr1-1 and ein2-1, two ethylene insensitive mutants in ethylene-signaling pathways, whereas the addition of 1-aminocyclopropane-1-carboxylic acid, a direct precursor of ethylene, does not induce ACS9 under normoxic conditions. These results indicate that ethylene is needed, but not sufficient, for the induction of ACS9 during hypoxia. This pattern of regulation is similar to that of ADH that encodes alcohol dehydrogenase, which we have reported previously. In contrast, the increased ethylene production during hypoxia has an inhibitory effect on ACS2 induction in roots, whereas ethylene has no effect on the hypoxic induction of ACS6 and ACS7. Based on these results, we propose that two signaling pathways are triggered during hypoxia. One pathway leads to the activation of ACS2, ACS6, and ACS7, whereas the other pathway leads to the activation of ADH and ACS9.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Springer
    Loading ...
    Write to the Help Desk