Send to:

Choose Destination
See comment in PubMed Commons below
Nucleic Acids Res. 2005 Jul 12;33(12):3828-36. Print 2005.

Investigation of the DNA-dependent cyclohexenyl nucleic acid polymerization and the cyclohexenyl nucleic acid-dependent DNA polymerization.

Author information

  • 1Laboratory for Medicinal Chemistry, Rega Institute for Medical Research Minderbroedersstraat 10, B-3000 Leuven, Belgium.


DNA polymerases from different evolutionary families [Vent (exo-) DNA polymerase from the B-family polymerases, Taq DNA polymerase from the A-family polymerases and HIV reverse transcriptase from the reverse transcriptase family] were examined for their ability to incorporate the sugar-modified cyclohexenyl nucleoside triphosphates. All enzymes were able to use the cyclohexenyl nucleotides as a substrate. Using Vent (exo-) DNA polymerase and HIV reverse transcriptase, we were even able to incorporate seven consecutive cyclohexenyl nucleotides. Using a cyclohexenyl nucleic acid (CeNA) template, all enzymes tested were also able to synthesize a short DNA fragment. Since the DNA-dependent CeNA polymerization and the CeNA-dependent DNA polymerization is possible to a limited extend, we suggest CeNA as an ideal candidate to use in directed evolution methods for the development of a polymerase capable of replicating CeNA.

[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk