Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Eur J Neurosci. 2005 Jun;21(12):3229-39.

Essential roles of Homer-1a in homeostatic regulation of pyramidal cell excitability: a possible link to clinical benefits of electroconvulsive shock.

Author information

  • 1Department of Integrative Brain Science, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan.

Abstract

Homer-1a/Vesl1S, a member of the scaffold protein family Homer/Vesl, is expressed during seizure and serves to reduce seizure susceptibility. Cellular mechanisms for this feedback regulation were studied in neocortex pyramidal cells by injecting Homer-1a protein intracellularly. The injection reduced membrane excitability as demonstrated in two ways. First, the resting potential was hyperpolarized by 5-10 mV. Second, the mean frequency of spikes evoked by depolarizing current injection was decreased. This reduction of excitability was prevented by applying each of the followings: the calcium chelator BAPTA, the calcium store depletor cyclopiazonic acid (CPA), the insitol-1,4,5-trisphosphate receptor (IP(3)R) blocker heparin, the phospholipase C (PLC) inhibitor U-73122, the metabotropic glutamate receptor (mGluR) antagonist 2-methyl-6-(phenylethynyl)-pyridine (MPEP), and the large-conductance calcium activated potassium channel (BK channel) antagonist charybdotoxin. The small-conductance calcium activated potassium channel (SK channel) blocker dequalinium was ineffective. These findings suggest that activation of mGluR by Homer-1a produced IP(3), which caused inositol-induced calcium release and a consequent BK channel opening, thus hyperpolarizing the injected neurons. In slices from rats subjected to electroconvulsive shock (ECS), a comparable reduction of excitability was observed without Homer-1a injection. The ECS-induced reduction of excitability was abolished by MPEP, charybdotoxin, heparin or BAPTA. Intracellular injection of anti-Homer-1a antibody was suppressive as well, but anti-Homer-1b/c antibody was not. We propose that ECS-induced Homer-1a stimulated the same pathway as did the injected Homer-1a, thereby driving a feedback regulation of excitability.

PMID:
16026461
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for Blackwell Publishing
    Loading ...
    Write to the Help Desk