Send to:

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 2005 Sep 9;280(36):31572-81. Epub 2005 Jul 14.

Tumor necrosis factor receptor 2 (TNFR2) signaling is negatively regulated by a novel, carboxyl-terminal TNFR-associated factor 2 (TRAF2)-binding site.

Author information

  • 1Centenary Institute of Cancer Medicine and Cell Biology, Locked Bag No. 6, Newtown, New South Wales 2042, Australia.


Tumor necrosis factor (TNF) superfamily receptors typically induce both NF-kappaB and JNK activation by recruiting the TRAF2 signal transduction protein to their cytoplasmic domain. The type 2 TNF receptor (TNFR2), however, is a poor activator of these signaling pathways despite its high TRAF2 binding capability. This apparent paradox is resolved here by the demonstration that TNFR2 carries a novel carboxyl-terminal TRAF2-binding site (T2bs-C) that prevents the delivery of activation signals from its conventional TRAF2-binding site (T2bs-N). T2bs-C does not conform to canonical TRAF2 binding motifs and appears to bind TRAF2 indirectly via an as yet unidentified intermediary. Specific inactivation of T2bs-N by site-directed mutagenesis eliminated most of the TRAF2 recruited to the TNFR2 cytoplasmic domain but had no effect on ligand-dependent activation of the NF-kappaB or JNK pathways. By contrast, inactivation of T2bs-C had little effect on the amount of TRAF2 recruited but greatly enhanced ligand-dependent NF-kappaB and JNK activation. In wild-type TNFR2 therefore, T2bs-C acts in a dominant fashion to attenuate signaling by the intrinsically more active T2bs-N but not by preventing TRAF2 recruitment. This unique uncoupling of TRAF2 recruitment and signaling at T2bs-N may be important in the modulation by TNFR2 of signaling through coexpressed TNFR1.

[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk