Display Settings:


Send to:

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 1992 Jun 15;267(17):12182-7.

Mutational analysis of the structure and function of the xeroderma pigmentosum group A complementing protein. Identification of essential domains for nuclear localization and DNA excision repair.

Author information

  • 1Department of Urology, Hyogo College of Medicine, Nishinomiya, Japan.


We showed previously that the xeroderma pigmentosum group A complementing (XPAC) protein involved in the DNA excision repair pathway contains a zinc-finger motif and is localized in the nucleus of normal human cells. For detailed structural and functional analyses of the XPAC protein, we constructed various XPAC cDNAs by site-directed mutagenesis and isolated permanent cell lines expressing mutant proteins. Immunofluorescent analysis of these lines indicated that the nuclear localization signal is located in the region encoded by Exon 1, especially centered at amino acids 30-42. A UV survival study showed that regions from Exons 2 through 6 were essential for DNA repair function, but that Exon 1 was not. Interestingly, deletion of the glutamic acid cluster in the region encoded by Exon 2 resulted in a dramatic loss of DNA repair activity. Furthermore, replacements of each of the 4 cysteines supposed to form a zinc-finger structure in the region encoded by Exon 3 by serine or glycine resulted in similar levels of loss of repair activity. These results suggest that all 4 cysteines forming a zinc-finger structure and also the glutamic acid cluster are important for DNA repair function.

[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Icon for HighWire
    Loading ...
    Write to the Help Desk