Send to:

Choose Destination
See comment in PubMed Commons below
Proc Natl Acad Sci U S A. 2005 Jul 19;102(29):10082-7. Epub 2005 Jul 11.

Evolution of highly active enzymes by homology-independent recombination.

Author information

  • 1Department of Chemistry and Biochemistry, University of Texas, Austin, TX 78712, USA.


The theta-class GST enzymes hGSTT1-1 (human GSTTheta-1-1) and rGSTT2-2 (rat GSTTheta-2-2) share 54.3% amino acid identity and exhibit different substrate specificities. Homology-independent techniques [incremental truncation for the creation of hybrid enzymes (ITCHY) and SCRATCHY] and low-homology techniques (recombination-dependent exponential amplification PCR) were used to create libraries of chimeric enzymes containing crossovers (C/Os) at positions not accessible by DNA family shuffling. High-throughput flow cytometric screening using the fluorogenic rGSTT2-2-specific substrate 7-amino-4-chloromethyl coumarin led to the isolation of active variants with either one or two C/Os. One of these enzymes, SCR23 (83% identity to hGSTT1-1), was encoded by a gene that exchanged helices 4 and 5 of hGSTT1-1 with the corresponding sequence from rGSTT2-2. Compared with either parent, this variant was found to have an improved k(cat) with the selection substrate and also exhibited activity for the conjugation of glutathione to ethacrynic acid, a compound that is not recognized by either parental enzyme. These results highlight the power of combinatorial homology-independent and low-homology recombination methods for the generation of unique, highly active enzymes and also suggest a possible means of enzyme "humanization."

[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk