Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Neurosci. 2005 Jul 6;25(27):6449-59.

Adult motor neuron apoptosis is mediated by nitric oxide and Fas death receptor linked by DNA damage and p53 activation.

Author information

  • 1Division of Neuropathology, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205-2196, USA. martin1@jhmi.edu

Abstract

The mechanisms of injury- and disease-related degeneration of motor neurons (MNs) need clarification. Unilateral avulsion of the sciatic nerve in the mouse induces apoptosis of spinal MNs that is p53 and Bax dependent. We tested the hypothesis that MN apoptosis is Fas death receptor dependent and triggered by nitric oxide (NO)- and superoxide-mediated damage to DNA. MNs in mice lacking functional Fas receptor and Fas ligand were protected from apoptosis. Fas protein levels and cleaved caspase-8 increased in MNs after injury. Fas upregulation was p53 dependent. MNs in mice deficient in neuronal NO synthase (nNOS) and inducible NOS (iNOS) resisted apoptosis. After injury, MNs increased nNOS protein but decreased iNOS protein; however, iNOS contributed more than nNOS to basal and injury-induced levels of NADPH diaphorase activity in MNs. NO and peroxynitrite (ONOO-) fluorescence increased in injured MNs, as did nitrotyrosine staining of MNs. DNA damage, assessed as 8-hydroxy-2-deoxyguanosine and single-stranded DNA, accumulated within injured MNs and was attenuated by nNOS and iNOS deficiency. nNOS deficiency increased DNA repair protein oxoguanine DNA-glycosylase, whereas iNOS deficiency blocked diaphorase activity. MN apoptosis was blocked by the antioxidant Trolox and by overexpression of wild-type human superoxide dismutase-1 (SOD1). In contrast, injured MNs in mice harboring mutant human SOD1 had upregulated Fas and iNOS, escalated DNA damage, and accelerated and increased MN degeneration and underwent necrosis instead of apoptosis. Thus, adult spinal MN apoptosis is mediated by upstream NO and ONOO- genotoxicity and downstream p53 and Fas activation and is shifted to necrosis by mutant SOD1.

PMID:
16000635
[PubMed - indexed for MEDLINE]
Free full text

Publication Types, MeSH Terms, Substances, Grant Support

Publication Types

MeSH Terms

Substances

Grant Support

PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk