Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Biomech. 2006;39(10):1891-902. Epub 2005 Jul 1.

Effect of different ankle- and knee-joint positions on gastrocnemius medialis fascicle length and EMG activity during isometric plantar flexion.

Author information

  • 1German Sport University of Cologne, Institute for Biomechanics and Orthopaedics, Carl-Diem-Weg 6, 50933 Cologne, Germany.

Abstract

The purpose of this study was to provide evidence on the fact that the observed decrease in EMG activity of the gastrocnemius medialis (GM) at pronounced knee flexed positions is not only due to GM insufficiency, by examining muscle fascicle lengths during maximal voluntary contractions at different positions. Twenty-two male long distance runners (body mass: 78.5+/-6.7 kg, height: 183+/-6 cm) participated in the study. The subjects performed isometric maximal voluntary plantar flexion contractions (MVC) of their left leg at six ankle-knee angle combinations. To examine the resultant ankle joint moments the kinematics of the left leg were recorded using a Vicon 624 system with 8 cameras operating at 120 Hz. The EMG activity of GM, gastrocnemius lateralis (GL), soleus (SOL) and tibialis anterior (TA) were measured using surface electromyography. Synchronously, fascicle length and pennation angle values of the GM were obtained at rest and at the plateau of the maximal plantar flexion using ultrasonography. The main findings were: (a) identifiable differences in fascicle length of the GM at rest do not necessarily imply that these differences would also exist during a maximal isometric plantar flexion contraction and (b) the EMG activity of the biarticular GM during the MVC decreased at a pronounced flexed knee-joint position (up to 110 degrees ) despite of no differences in GM fascicle length. It is suggested that the decrease in EMG activity of the GM at pronounced knee flexed positions is due to a critical force-length potential of all three muscles of the triceps surae.

PMID:
15993886
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk