Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Dev Cell. 2005 Jul;9(1):147-58.

Left-right asymmetry in the sea urchin embryo is regulated by nodal signaling on the right side.

Author information

  • 1UMR 7009 CNRS, Université de Paris VI, Biologie du Développement, Observatoire Oceanologique, 06230 Villefranche-sur-Mer, France.

Abstract

The asymmetric positioning of internal organs on the left or right side of the body is highly conserved in vertebrates and relies on a Nodal signaling pathway acting on the left side of the embryo. Whether the same pathway also regulates left-right asymmetry in invertebrates and what is the evolutionary origin of the mechanisms controlling left-right determination are not known. Here, we show that nodal regulates left-right asymmetry in the sea urchin but that, intriguingly, its expression is reversed compared to vertebrates. Nodal signals emitted from the right side of the larva prevent the right coelomic pouch from forming the imaginal rudiment. Inhibition of Nodal signaling after gastrulation causes formation of an ectopic rudiment on the right side, leading to twinned urchins after metamorphosis. In contrast, ectopic activation of the pathway prevents formation of the rudiment. Our results show that the mechanisms responsible for left-right determination are conserved within basal deuterostomes.

PMID:
15992548
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science Icon for Faculty of 1000
    Loading ...
    Write to the Help Desk