Format

Send to:

Choose Destination
See comment in PubMed Commons below
Dev Cell. 2005 Jul;9(1):87-98.

In vivo dynamics of clathrin and its adaptor-dependent recruitment to the actin-based endocytic machinery in yeast.

Author information

  • 1Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, Ohio 44106, USA.

Abstract

Clathrin-mediated transport is a major pathway for endocytosis. However, in yeast, where cortical actin patches are essential for endocytosis, plasma membrane-associated clathrin has never been observed. Using live cell imaging, we demonstrate cortical clathrin in association with the actin-based endocytic machinery in yeast. Fluorescently tagged clathrin is found in highly mobile internal trans-Golgi/endosomal structures and in smaller cortical patches. Total internal reflection fluorescence microscopy showed that cortical patches are likely endocytic sites, as clathrin is recruited prior to a burst of intensity of the actin patch/endocytic marker, Abp1. Clathrin also accumulates at the cortex with internalizing alpha factor receptor, Ste2p. Cortical clathrin localizes with epsins Ent1/2p and AP180s, and its recruitment to the surface is dependent upon these adaptors. In contrast, Sla2p, End3p, Pan1p, and a dynamic actin cytoskeleton are not required for clathrin assembly or exchange but are required for the mobility, maturation, and/or turnover of clathrin-containing endocytic structures.

PMID:
15992543
[PubMed - indexed for MEDLINE]
Free full text

Publication Types, MeSH Terms, Substances, Grant Support

Publication Types

MeSH Terms

Substances

Grant Support

PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk