Send to

Choose Destination
See comment in PubMed Commons below
J Neurosci. 2005 Jun 29;25(26):6243-50.

Mice with genetically altered glucocorticoid receptor expression show altered sensitivity for stress-induced depressive reactions.

Author information

  • 1Division of Molecular Biology of the Cell I, German Cancer Research Center, D-69120 Heidelberg, Germany.


Altered glucocorticoid receptor (GR) signaling is a postulated mechanism for the pathogenesis of major depression. To mimic the human situation of altered GR function claimed for depression, we generated mouse strains that underexpress or overexpress GR, but maintain the regulatory genetic context controlling the GR gene. To achieve this goal, we used the following: (1) GR-heterozygous mutant mice (GR+/-) with a 50% GR gene dose reduction, and (2) mice overexpressing GR by a yeast artificial chromosome resulting in a twofold gene dose elevation. GR+/- mice exhibit normal baseline behaviors but demonstrate increased helplessness after stress exposure, a behavioral correlate of depression in mice. Similar to depressed patients, GR+/- mice have a disinhibited hypothalamic-pituitary-adrenal (HPA) system and a pathological dexamethasone/corticotropin-releasing hormone test. Thus, they represent a murine depression model with good face and construct validity. Overexpression of GR in mice evokes reduced helplessness after stress exposure, and an enhanced HPA system feedback regulation. Therefore, they may represent a model for a stress-resistant strain. These mouse models can now be used to study biological changes underlying the pathogenesis of depressive disorders. As a first potential molecular correlate for such changes, we identified a downregulation of BDNF protein content in the hippocampus of GR+/- mice, which is in agreement with the so-called neurotrophin hypothesis of depression.

[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk