Format

Send to

Choose Destination
See comment in PubMed Commons below
Cancer Lett. 2006 May 8;236(1):13-23. Epub 2005 Jun 22.

Molecular mechanisms of aging-associated inflammation.

Author information

  • 1Department of Pathology, Herbert Irving Comprehensive Cancer Center, College of Physicians & Surgeons, Columbia University Medical Center, New York, NY 10032, USA.

Abstract

A direct relationship exists between aging and increasing incidences of chronic diseases. In fact, with most age-associated diseases individuals manifest an underlying chronic inflammatory state as evidenced by local infiltration of inflammatory cells, such as macrophages, and higher circulatory levels of pro-inflammatory cytokines, complement components and adhesion molecules. Consequently, treatment with anti-inflammatory agents provide symptomatic relief to several aging-associated diseases, even as remote as Alzheimer's or Parkinson's disease, indicating that chronic inflammation may play a substantial role in the pathogenesis of these disease states. The molecular mechanisms underlying this chronic inflammatory condition during cellular senescence is presently unclear. Cellular damage by oxygen free radicals is a primary driving force for aging and increased activation of redox-regulated transcription factors, such as NF-kappaB that regulate the expression of pro-inflammatory molecules, has been documented in aged animals/individuals versus their young counterparts. Human polynucleotide phosphorylase (hPNPase(old-35)), a RNA degradation enzyme shown to be upregulated during differentiation and cellular senescence, may represent a molecular link between aging and its associated inflammation. hPNPase(old-35) promotes reactive oxygen species (ROS) production, activates the NF-kappaB pathway and initiates the production of pro-inflammatory cytokines, such as IL-6 and IL-8. In these contexts, inhibition of hPNPase(old-35) may represent a novel molecular target for intervening in aging-associated chronic diseases.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk