Format

Send to

Choose Destination
See comment in PubMed Commons below
Planta. 2005 Oct;222(2):307-18. Epub 2005 Jun 21.

Characterization of the monophenolase activity of tyrosinase on betaxanthins: the tyramine-betaxanthin/dopamine-betaxanthin pair.

Author information

  • 1Departamento de Bioquímica y Biología Molecular A, Unidad Docente de Biología, Facultad de Veterinaria, Universidad de Murcia, 30100, Espinardo, Spain.

Abstract

Tyrosinase or polyphenol oxidase (EC 1.14.18.1) is the key enzyme responsible for melanin biosynthesis and for the enzymatic browning of fruits and vegetables. Although the function of tyrosinase in the secondary metabolism of plants remains unclear, it has been proposed that the enzyme plays a role in the betalain biosynthetic pathway. Betalains are an important class of water-soluble pigments, characteristic of plants belonging to the order Caryophyllales. In the present work, the betaxanthins tyramine-betaxanthin (miraxanthin III) and dopamine-betaxanthin (miraxanthin V) are reported as new natural substrates for tyrosinase. The result of the diphenolase activity of the enzyme on dopamine-betaxanthin was a series of products identified by HPLC and ESI-MS as quinone-derivatives. Data indicate that dopamine-betaxanthin-quinone is obtained and evolves to more stable species by intramolecular cyclization. The kinetic parameters evaluated for the diphenolase activity were V(m) = 74.4 microM min(-1), K(m) = 94.7 microM. Monophenolase activity on tyramine-betaxanthin yielded the same compounds in the absence of a reducing agent, but when ascorbic acid was present enzymatic conversion to dopamine-betaxanthin could be found. For the first time, kinetic characterization of the monophenolase activity of tyrosinase on betaxanthins is provided (V(m) = 10.4 microM min(-1) and K(m) = 126.9 microM) and a lag period is described and analyzed according to the mechanism of action of the enzyme. The high affinity shown by tyrosinase for these substrates may be indicative of a previously unconsidered physiological role in betalain metabolism. A possible mechanism for the formation of 2-descarboxy-betacyanins from tyramine-betaxanthin by tyrosinase is also discussed.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Springer
    Loading ...
    Write to the Help Desk