Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Mol Biol. 2005 Jul 22;350(4):757-75.

Simulation and experiment conspire to reveal cryptic intermediates and a slide from the nucleation-condensation to framework mechanism of folding.

Author information

  • 1Biomolecular Structure and Design Program, Department of Medicinal Chemistry, University of Washington, Box 357610, Seattle, WA 98195-7610, USA.

Abstract

There is a change from three-state to two-state kinetics of folding across the homeodomain superfamily of proteins as the mechanism slides from framework to nucleation-condensation. The tendency for framework folding in this family correlates with inherent helical propensity. The cellular myeloblastis protein (c-Myb) falls in the mechanistic transition region. An earlier, preliminary report of protein engineering experiments and molecular dynamics simulations (MD) showed that the folding mechanism for this protein has aspects of both the nucleation-condensation and framework models. In the more in-depth analysis of the MD trajectories presented here, we find that folding may be attributed to both of these mechanisms in different regions of the protein. The folding of the loop, middle helix, and turn is best described by nucleation-condensation, whereas folding of the N and C-terminal helices may be described by the framework model. Experimentally, c-Myb folds by apparent two-state kinetics, but the MD simulations predict that the kinetics hide a high-energy intermediate. We stabilized this hypothetical folding intermediate by deleting a residue (P174) in the loop between its second and third helices, and the mutant intermediate is long-lived in the simulations. Equilibrium and kinetic experiments demonstrate that folding of the DeltaP174 mutant is indeed three-state. The presence and shape of the intermediate observed in the simulations were confirmed by small angle X-ray scattering experiments.

PMID:
15967458
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk