Send to:

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 2005 Aug 12;280(32):29381-91. Epub 2005 Jun 16.

Myosin X is a high duty ratio motor.

Author information

  • 1Department of Physiology, University of Massachusetts Medical School, Worcester, MA 01655, USA.


Myosin X is expressed in a variety of cell types and plays a role in cargo movement and filopodia extension, but its mechanoenzymatic characteristics are not fully understood. Here we analyzed the kinetic mechanism of the ATP hydrolysis cycle of acto-myosin X using a single-headed construct (M10IQ1). Myosin X was unique for the weak "strong actin binding state" (AMD) with a K(d) of 1.6 microm attributed to the large dissociation rate constant (2.1 s(-1)). V(max) and K(ATPase) of the actin-activated ATPase activity of M10IQ1 were 13.5 s(-1) and 17.4 mum, respectively. The ATP hydrolysis rate (>100 s(-1)) and the phosphate release rate from acto-myosin X (>100 s(-1)) were much faster than the entire ATPase cycle rate and, thus, not rate-limiting. The ADP off-rate from acto-myosin X was 23 s(-1), which was two times larger than the V(max). The P(i)-burst size was low (0.46 mol/mol), indicating that the equilibrium is significantly shifted toward the prehydrolysis intermediate. The steady-state ATPase rate can be explained by a combination of the unfavorable equilibrium constant of the hydrolysis step and the relatively slow ADP off-rate. The duty ratio calculated from our kinetic model, 0.6, was consistent with the duty ratio, 0.7, obtained from comparison of K(m ATPase) and K(m motility). Our results suggest that myosin X is a high duty ratio motor.

[PubMed - indexed for MEDLINE]
Free full text

LinkOut - more resources

Full Text Sources

Other Literature Sources

PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk