Display Settings:

Format

Send to:

Choose Destination
Environ Monit Assess. 2005 Jun;105(1-3):341-57.

Pollution and genetic structure of North American populations of the common dandelion (Taraxacum officinale).

Author information

  • 1Department of Zoology, Miami University-Hamilton, Hamilton, Ohio, USA.

Abstract

Assessing the genetic structure of natural populations differentially impacted by anthropogenic contaminants can be a useful tool for evaluating the population genetic consequences of exposure to pollution. In this study, measures of genetic diversity at variable-number-tandem-repeat loci in six dandelion populations (3 urban and 3 rural) showed patterns that may have been influenced by exposure to environmental contaminants. Mean genetic similarity among individuals within a population was significantly and positively correlated with increasing levels of airborne particulate matter (< or = 10 microm, PM10) and soil concentrations of four metals (Cd, Fe, Ni and Pb). In addition, mean genetic similarity was always significantly higher at the urban sites compared to rural sites. There was a significant negative correlation between the number of genotypes at a site and increasing amounts of PM10, concentrations of five soil metals (Cd, Cu, Fe, Ni and Pb), leaf tissue levels of Fe and a significant positive correlation between the extent of clonality at a site and levels of PM10 and soil concentrations of five metals (Cd, Cu, Fe, Ni and Pb). Although, this study does not directly establish a causal link between the specific contaminants detected at the study sites and differences in genetic diversity, our data are consistent with the hypothesis that pollution-induced selection has contributed in some fashion to the lower genetic diversity found at the urban sites.

PMID:
15952527
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Springer
    Loading ...
    Write to the Help Desk