Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Neuron. 2005 May 19;46(4):681-92.

Uncertainty, neuromodulation, and attention.

Author information

  • 1Gatsby Computational Neuroscience Unit, London, United Kingdom. feraina@gatsby.ucl.ac.uk

Abstract

Uncertainty in various forms plagues our interactions with the environment. In a Bayesian statistical framework, optimal inference and prediction, based on unreliable observations in changing contexts, require the representation and manipulation of different forms of uncertainty. We propose that the neuromodulators acetylcholine and norepinephrine play a major role in the brain's implementation of these uncertainty computations. Acetylcholine signals expected uncertainty, coming from known unreliability of predictive cues within a context. Norepinephrine signals unexpected uncertainty, as when unsignaled context switches produce strongly unexpected observations. These uncertainty signals interact to enable optimal inference and learning in noisy and changeable environments. This formulation is consistent with a wealth of physiological, pharmacological, and behavioral data implicating acetylcholine and norepinephrine in specific aspects of a range of cognitive processes. Moreover, the model suggests a class of attentional cueing tasks that involve both neuromodulators and shows how their interactions may be part-antagonistic, part-synergistic.

Comment in

PMID:
15944135
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk