Format

Send to:

Choose Destination
See comment in PubMed Commons below
Oncogene. 2005 Sep 15;24(41):6256-68.

Diallyl trisulfide-induced G(2)-M phase cell cycle arrest in human prostate cancer cells is caused by reactive oxygen species-dependent destruction and hyperphosphorylation of Cdc 25 C.

Author information

  • 1Department of Pharmacology and University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA.

Abstract

Molecular mechanism of cell cycle arrest caused by diallyl trisulfide (DATS), a garlic-derived cancer chemopreventive agent, has been investigated using PC-3 and DU 145 human prostate cancer cells as a model. Treatment of PC-3 and DU 145 cells, but not a normal prostate epithelial cell line (PrEC), with growth suppressive concentrations of DATS caused enrichment of the G(2)-M fraction. The DATS-induced cell cycle arrest in PC-3 cells was associated with increased Tyr(15) phosphorylation of cyclin-dependent kinase 1 (Cdk 1) and inhibition of Cdk 1/cyclinB 1 kinase activity. The DATS-treated PC-3 and DU 145 cells also exhibited a decrease in the protein level of Cdc 25 C and an increase in its Ser(216) phosphorylation. The DATS-mediated decrease in protein level and Ser(216) phosphorylation of Cdc 25 C as well as G(2)-M phase cell cycle arrest were significantly attenuated in the presence of N-acetylcysteine implicating reactive oxygen species (ROS) in cell cycle arrest caused by DATS. ROS generation was observed in DATS-treated PC-3 and DU 145 cells. DATS treatment also caused an increase in the protein level of Cdk inhibitor p21, but DATS-induced G(2)-M phase arrest was not affected by antisense-mediated suppression of p21 protein level. In conclusion, the results of the present study indicate that DATS-induced G(2)-M phase cell cycle arrest in human prostate cancer cells is caused by ROS-mediated destruction and hyperphosphorylation of Cdc 25 C.

Oncogene (2005) 24, 6256-6268.

PMID:
15940258
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Nature Publishing Group
    Loading ...
    Write to the Help Desk