Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Structure. 2005 Jun;13(6):893-904.

Coupling between catalytic site and collective dynamics: a requirement for mechanochemical activity of enzymes.

Author information

  • 1Department of Computational Biology, school of Medicine, University of Pittsburgh, Pennsylvania 15261, USA.

Abstract

Growing evidence supports the view that enzymatic activity results from a subtle interplay between chemical kinetics and molecular motions. A systematic analysis is performed here to delineate the type and level of coupling between catalysis and conformational mechanics. The dynamics of a set of 98 enzymes representative of different EC classes are analyzed with the Gaussian network model (GNM) and compared with experimental data. In more than 70% of the examined enzymes, the global hinge centers predicted by the GNM are found to be colocalized with the catalytic sites experimentally identified. Low translational mobility (< 7%) is observed for the catalytic residues, consistent with the fine-tuned design of enzymes to achieve precise mechanochemical activities. Ligand binding sites, while closely neighboring catalytic sites, enjoy a moderate flexibility to accommodate the ligand binding. These findings could serve as additional criteria for assessing drug binding residues and could lessen the computational burden of substrate docking searches.

Comment in

PMID:
15939021
[PubMed - indexed for MEDLINE]
PMCID:
PMC1489920
Free PMC Article

Images from this publication.See all images (6)Free text

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for Elsevier Science Icon for PubMed Central
    Loading ...
    Write to the Help Desk