Display Settings:

Format

Send to:

Choose Destination
J Am Coll Cardiol. 2005 Jun 7;45(11):1802-6.

Inflammation, as measured by the erythrocyte sedimentation rate, is an independent predictor for the development of heart failure.

Author information

  • 1Public Health and Caring Sciences, Uppsala, Sweden. erik.ingelsson@pubcare.uu.se

Abstract

OBJECTIVES:

Our objective was to explore inflammation, measured as erythrocyte sedimentation rate (ESR), as a predictor for the development of heart failure (HF).

BACKGROUND:

In recent years, evidence of the importance of inflammation in the pathophysiology of HF has emerged, and various inflammatory markers have been found to predict future HF. Erythrocyte sedimentation rate is an inexpensive and easily accessible marker of systemic inflammation, but to this date it is unknown whether ESR predicts subsequent HF.

METHODS:

In a community-based prospective study of 2,314 middle-aged men free from HF, myocardial infarction, and valvular disease at baseline, ESR was analyzed in multivariable models together with established risk factors for HF (hypertension, diabetes, electrocardiographic left ventricular hypertrophy, smoking, obesity, and serum cholesterol) and hematocrit.

RESULTS:

A total of 282 men developed HF during a median follow-up time of 30 years. In Cox proportional hazards analyses, ESR was an independent predictor of HF (hazard ratio 1.46 for highest quartile vs. the lowest, 95% confidence interval 1.04 to 2.06). This observation remained significant when also adjusting for interim myocardial infarction during follow-up.

CONCLUSIONS:

Erythrocyte sedimentation rate was a significant predictor of HF, independent of established risk factors for HF, and interim myocardial infarction after three decades of follow-up in a population-based sample of middle-aged men. Our findings indicate that inflammation occurs early in the process leading to HF and that ESR could be used to evaluate this process.

PMID:
15936609
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk