Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Vis Neurosci. 2005 Mar-Apr;22(2):203-9.

Diurnal and circadian retinomotor movements in zebrafish.

Author information

  • 1Department of Biology and Biochemistry, University of Houston, Science and Research Building 2, Houston, TX 77204-5001, USA.

Abstract

Key indicators of circadian regulation include the persistence of physiological rhythmicity in the absence of environmental time cues and entrainment of this rhythmicity by the ambient light cycle. In some teleosts, the inner segments of rod and cone photoreceptors contract and elongate according to changes in ambient lighting and the circadian cycle. Pigment granules in the retinal pigment epithelium (RPE) disperse and aggregate in a similar manner. Collectively, these movements are known as retinomotor movements. We report the histological characterization of diurnal and circadian retinomotor movements in zebrafish, Danio rerio. Adult fish subjected to a 14:10 light:dark (LD) cycle, constant darkness (DD), or constant light (LL) were sacrificed at 1-13 h intervals and processed for semithin sectioning of the retina. Using bright-field microscopy, 15 measurements of pigment granule position and the inner segment lengths of 30 rods and 30-45 cones were collected from the central third of the dorso-optic retina per time point. In LD, rods and cones followed a clear diurnal rhythm in their inner segment movements. Short-single, UV-sensitive cones were found to contract significantly 1 h before light onset in LD conditions. In DD conditions, the inner segments movements of short-single and double cones displayed statistically significant rhythms. RPE pigment granule movements are rhythmically regulated in both LD and DD although fluctuations are damped in the absence of photic cues. No significant retinomotor movements were observed in LL. These findings indicate retinomotor movements in zebrafish are differentially regulated by an endogenous oscillator and by light-dependent mechanisms.

PMID:
15935112
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Cambridge University Press
    Loading ...
    Write to the Help Desk