Send to:

Choose Destination
See comment in PubMed Commons below
J Org Chem. 2005 Jun 10;70(12):4629-36.

Mechanisms of reaction of aminoxyl (nitroxide), iminoxyl, and imidoxyl radicals with alkenes and evidence that in the presence of lead tetraacetate, N-hydroxyphthalimide reacts with alkenes by both radical and nonradical mechanisms.

Author information

  • 1National Research Council, Ottawa, ON, K1A 0R6, Canada.


1,2-dideuterio-cyclohexene, 1,2-dideuterio-cyclooctene, and trans-3,4-dideuterio-hex-3-ene were reacted with three >NO* radicals: 4-hydroxyTempo, di-tert-butyliminoxyl, both used as the actual radicals, and phthalimide-N-oxyl (PINO) generated from N-hydroxyphthalimide (NHPI) by its reaction with tert-alkoxyl radicals (t-RO*) and with lead tetraacetate. In all cases, except the NHPI/Pb(OAc)4 system, only mono >NO-substituted alkenes were produced. The 2H NMR spectra imply that 88-92% of monoadducts were formed by the initial abstraction of an allylic H-atom, followed by capture of the allylic radical by a second >NO*, while the remaining 12-8% appear to be formed by an initial addition of >NO* to the double bond followed by H-atom abstraction by a second >NO*. A substantial and sometimes the major product formed with the NHPI/Pb(OAc)4 system has two PINO moieties added across the double bond. Since such diadducts are not formed with the NHPI/t-RO* system, a heterolytic mechanism is proposed, analogous to that known for the Pb(OAc)4-induced acetoxylation of alkenes. A detailed analysis of the NHPI/Pb(OAc)4/alkene products indicates that monosubstitution occurs by both homolytic and heterolytic processes.

PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for American Chemical Society
    Loading ...
    Write to the Help Desk