Format

Send to:

Choose Destination
See comment in PubMed Commons below

Honey bees as a model for understanding mechanisms of life history transitions.

Author information

  • 1Department of Biological Sciences, University of Nevada, Las Vegas, 4505 S. Maryland Parkway, Las Vegas, NV 89154-4004, USA. michelle.elekonich@ccmail.nevada.edu

Abstract

As honey bee workers switch from in-hive tasks to foraging, they undergo transition from constant exposure to the controlled homogenous physical and sensory environment of the hive to prolonged diurnal exposures to a far more heterogeneous environment outside the hive. The switch from hive work to foraging offers an opportunity for the integrative study of the physiological and genetic mechanisms that produce the behavioral plasticity required for major life history transitions. Although such transitions have been studied in a number of animals, currently there is no model system where the evolution, development, physiology, molecular biology, neurobiology and behavior of such a transition can all be studied in the same organism in its natural habitat. With a large literature covering its evolution, behavior and physiology (plus the recent sequencing of the honey bee genome), the honey bee is uniquely suited to integrative studies of the mechanisms of behavior. In this review we discuss the physiological and genetic mechanisms of this behavioral transition, which include large scale changes in hormonal activity, metabolism, flight ability, circadian rhythms, sensory perception and processing, neural architecture, learning ability, memory and gene expression.

PMID:
15925525
[PubMed - indexed for MEDLINE]

LinkOut - more resources

Full Text Sources

Other Literature Sources

PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk