Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Biochim Biophys Acta. 2005 Jul 10;1744(3):415-37.

Common principles in clathrin-mediated sorting at the Golgi and the plasma membrane.

Author information

  • 1Department of Cell Biology and Physiology University of Pittsburgh School of Medicine 3500 Terrace Street, S325BST Pittsburgh, PA 15206, USA. traub@pitt.edu

Abstract

Clathrin-mediated vesicular trafficking events underpin the vectorial transfer of macromolecules between several eukaryotic membrane-bound compartments. Classical models for coat operation, focused principally on interactions between clathrin, the heterotetrameric adaptor complexes, and cargo molecules, fail to account for the full complexity of the coat assembly and sorting process. New data reveal that targeting of clathrin adaptor complexes is generally supported by phosphoinositides, that cargo recognition by heterotetrameric adaptors depends on phosphorylation-driven conformational alterations, and that dedicated clathrin-associated sorting proteins (CLASPs) exist to promote the selective trafficking of specific categories of cargo. A host of accessory factors also participate in coat polymerization events, and the independently folded appendage domains that project off the heterotetrameric adaptor core function as recruitment platforms that appear to oversee assembly operations. It is also now clear that focal polymerization of branched actin microfilaments contributes to clathrin-coated vesicle assembly and movement at both plasma membrane and Golgi sites. This improved appreciation of the complex mechanisms governing clathrin-dependent sorting events reveals several common principles of clathrin operation at the Golgi and the plasma membrane.

PMID:
15922462
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk