Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Respir Care. 2005 Jun;50(6):742-63; discussion 763-5.

The microbiology of ventilator-associated pneumonia.

Author information

  • 1Division of Pulmonary and Critical Care Medicine, Harborview Medical Center, University of Washington, Seattle, WA 98104, USA. drp@u.washington.edu

Abstract

Ventilator-associated pneumonia (VAP) is a common complication of ventilatory support for patients with acute respiratory failure and is associated with increased morbidity, mortality, and costs. Awareness of the microbiology of VAP is essential for selecting optimal antibiotic therapy and improving these outcomes. The specific microbial causes of VAP are many and varied. Most cases of VAP are caused by bacterial pathogens that normally colonize the oropharynx and gut, or that are acquired via transmission by health-care workers from environmental surfaces or from other patients. Common pathogens include Pseudomonas species and other highly resistant Gram-negative bacilli, staphylococci, the Enterobacteriaceae, streptococci, and Haemophilus species. Antibiotic-resistant pathogens such as Pseudomonas and Acinetobacter species and methicillin-resistant strains of Staphylococcus aureus are much more common after prior antibiotic treatment or prolonged hospitalization or mechanical ventilation, and when other risk factors are present. The bacterial pathogens responsible for VAP also vary depending on patient characteristics and in certain clinical circumstances, such as in acute respiratory distress syndrome or following tracheostomy, traumatic injuries, or burns. But these differences appear to be due primarily to the duration of mechanical ventilation and/or degree of prior antibiotic exposure of these patients. The causes of VAP can vary considerably by geographic location (even between units in the same hospital), emphasizing the importance of local epidemiological and microbiological data. Atypical bacteria, viruses, and fungi also have been implicated as causes of VAP, but these pathogens have not been studied systematically and their role is presently unclear. In conclusion, information about the microbiology of VAP serves to guide optimal antibiotic therapy. The risk of antibiotic-resistant pathogens can be estimated using simple clinical features and awareness of local microbiology patterns. The roles of atypical bacterial and nonbacterial pathogens in VAP are incompletely understood and should be investigated further.

PMID:
15913466
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk