Complete modal decomposition for optical waveguides

Phys Rev Lett. 2005 Apr 15;94(14):143902. doi: 10.1103/PhysRevLett.94.143902. Epub 2005 Apr 14.

Abstract

Virtually all electromagnetic waveguiding structures support a multiplicity of modes. Nevertheless, to date, an experimental method for unique decomposition of the fields in terms of the component eigenmodes has not been realized. The fundamental problem is that all current attempts of modal decomposition do not yield phase information. Here we introduce a noninterferometric approach to achieve modal decomposition of the fields at the output of a general waveguiding structure. The technique utilizes a mapping of the two-dimensional field distribution onto the one-dimensional space of waveguide eigenmodes, together with a phase-retrieval algorithm to extract the amplitudes and phases of all the guided vectorial modes. Experimental validation is provided by using this approach to examine the interactions of 16 modes in a hollow-core photonic-band gap fiber.