Molecular basis of autosomal dominant polycystic kidney disease

Adv Anat Pathol. 2005 May;12(3):126-33. doi: 10.1097/01.pap.0000163959.29032.1f.

Abstract

Autosomal dominant polycystic kidney disease (ADPKD) is a serious, life-threatening genetic disease in which extensive epithelial-lined cysts develop in the kidneys and, to a lesser extent, in other organs such as liver, pancreas, and ovaries. In a majority of cases (80-85%), the gene involved is PKD1, which is located on chromosome 16 (16q13.3) and encodes polycystin-1, a large receptor-like integral membrane protein that contains several extracellular motifs indicative of cell-cell and cell-matrix interaction. In the remaining (10-15%) cases, the disease is milder and is caused by mutational changes in another gene (PKD2), which is located at chromosome 4 (4q21-23) and encodes polcystin-2, a transmembrane protein, which acts as a nonspecific calcium-permeable channel. Both polycystins function together in a nonredundant fashion, through a common pathway, and produce cellular responses that regulate proliferation, migration, differentiation, and kidney morphogenesis. Through combined function of polycystins, normal tubular cells are maintained in a state of terminal differentiation, and their proliferation is strictly controlled. Loss of function of either protein due to gene mutations results in the tubular cells reverting to a less differentiated state, which is more prone to proliferation. Patients with ADPKD carry a germ-line mutation in PKD1 or PKD2. A second somatic mutation in some of the tubular cells results in loss of both normal alleles, leading to loss of polycystin function. The affected cells lose the normal terminally differentiated state, revert to less differentiated phenotype, and undergo proliferation, which leads to cyst formation. As the cysts enlarge over many decades, the normal renal parenchyma is progressively destroyed, leading to renal failure. Recently, the crucial role of primary cilia in modulating proliferation, migration, and differentiation of tubular epithelium has been recognized. Most of the tubular cells have one or two primary cilia projecting from the apical surface into the luminal space. The cilia act as mechanoreceptors as they bend with the urinary flow within the tubules. Both polycystins are strategically located within the cilia and act as important mediators of ciliary mechanosensation. Loss of this important function due to mutational changes in PKD1 or PKD2 leads to loss of normal control over cellular proliferation, resulting in cyst formation. Several other ciliary proteins have recently been found to contribute directly to a wide spectrum of human kidney diseases with cystic phenotype, thus underscoring the pivotal role the primary cilia play in maintaining the normal structure and function of the tubular cells and probably other cells in the body.

Publication types

  • Review

MeSH terms

  • Animals
  • Cilia / ultrastructure
  • Germ-Line Mutation
  • Humans
  • Membrane Proteins / genetics
  • Mice
  • Polycystic Kidney, Autosomal Dominant / genetics
  • Polycystic Kidney, Autosomal Dominant / pathology
  • Polycystic Kidney, Autosomal Dominant / physiopathology*
  • Proteins / genetics
  • TRPP Cation Channels

Substances

  • Membrane Proteins
  • Proteins
  • TRPP Cation Channels
  • polycystic kidney disease 1 protein
  • polycystic kidney disease 2 protein