Format

Send to:

Choose Destination
See comment in PubMed Commons below
Oecologia. 2005 Aug;144(4):628-35. Epub 2005 May 11.

Extreme isotopic depletion of nitrogen in New Zealand lithophytes and epiphytes; the result of diffusive uptake of atmospheric ammonia?

Author information

  • 1Department of Biological Sciences, University of Waikato, Private Bag 3105, Hamilton, New Zealand.

Abstract

Several lichens and the terrestrial alga Trentepohlia were found to have extremely depleted 15N signatures at two sites near the Rotorua geothermal area, New Zealand. Values, typically -20 per thousand, with several extreme cases of -24 per thousand, are more isotopically depleted than any previously quoted delta15N signature for vegetation growing in natural environments. For Trentepohlia, distance from a geothermal source did not affect isotopic signature. A 100-km transect showed that the phenomenon is widespread and the discrimination is not related to substrate N, or to elevation. Rainfall NHx and atmospheric gaseous NH3 (NH3(g)) were shown to be isotopically depleted in the range -1 per thousand to -8 per thousand and could not, of themselves, be responsible for the plant values obtained. A simulation of Trentepohlia thallus was created using an acidified fiberglass mat and was allowed to absorb NH3(g) from the atmosphere. Mats exposed at the geothermal sites and on farm-land showed a significant further depletion of 15N to -17 per thousand. We hypothesize that the extreme isotopic depletion is due to dual fractionation: firstly by the volatilization of NH3(g) from aqueous sources into the atmosphere; secondly by the diffusive assimilation of that NH3(g) into vegetation. We further hypothesize that lithophytes, epiphytes, and higher plants, growing on strongly N-limited substrates, will show this phenomenon more or less, depending on the proportion of diffusively assimilated NH3(g) utilized as a N source. Many of the isotopically depleted delta15N signatures in vegetation, previously reported in the literature, especially epiphytes, may be due to this form of uptake depending on the concentration of atmospheric NH3(g), and the degree of reliance on that form of N.

PMID:
15891815
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Springer
    Loading ...
    Write to the Help Desk