Display Settings:

Format

Send to:

Choose Destination
We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Dev Biol. 2005 Jul 1;283(1):97-112.

bloodthirsty, an RBCC/TRIM gene required for erythropoiesis in zebrafish.

Author information

  • 1Department of Biology, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, USA.

Abstract

The Antarctic icefishes (family Channichthyidae, suborder Notothenioidei) constitute the only vertebrate taxon that fails to produce red blood cells. These fishes can be paired with closely related, but erythrocyte-producing, notothenioids to discover erythropoietic genes via representational difference analysis. Using a B30.2-domain-encoding DNA probe so derived from the hematopoietic kidney (pronephros) of a red-blooded Antarctic rockcod, Notothenia coriiceps, we discovered a related, novel gene, bloodthirsty (bty), that encoded a 547-residue protein that contains sequential RING finger, B Box, coiled-coil, and B30.2 domains. bty mRNA was expressed by the pronephric kidney of N. coriiceps at a steady-state level 10-fold greater than that found in the kidney of the icefish Chaenocephalus aceratus. To test the function of bty, we cloned the orthologous zebrafish gene from a kidney cDNA library. Whole-mount in situ hybridization of zebrafish embryos showed that bty mRNA was present throughout development and, after the mid-blastula transition, was expressed in the head and in or near the site of primitive erythropoiesis in the tail just prior to red cell production. One- to four-cell embryos injected with two distinct antisense morpholino oligonucleotides (MOs) targeted to the 5'-end of the bty mRNA failed to develop red cells, whereas embryos injected with 4- and 5-bp mismatch control MOs produced wild-type quantities of erythrocytes. The morphant phenotype was rescued by co-injection of synthetic bty mRNA containing an artificial 5'-untranslated region (UTR) with the antisense MO that bound the 5'-UTR of the wild-type bty transcript. Furthermore, the expression of genes that mark terminal erythroid differentiation was greatly reduced in the antisense-MO-treated embryos. We conclude that bty is likely to play a role in differentiation of the committed red cell progenitor.

PMID:
15890331
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk