Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 2005 Jul 8;280(27):25637-43. Epub 2005 May 9.

Alpha-kinase 1, a new component in apical protein transport.

Author information

  • 1Department of Cell Biology and Cell Pathology, Philipps-University Marburg, D-35033 Marburg, Germany.

Abstract

A key aspect in the structure of epithelial cells is the maintenance of a polarized organization based on a highly specific sorting machinery for cargo destined for the apical or the basolateral membrane domain at the exit site of the trans-Golgi network. We could recently identify two distinct post-trans-Golgi network vesicle populations that travel along separate routes to the plasma membrane, a lipid raft-dependent and a lipid raft-independent pathway. A new component of raft-carrying apical vesicles is alpha-kinase 1 (ALPK1), which was identified in immunoisolated vesicles carrying raft-associated sucrase-isomaltase (SI). This kinase was absent from vesicles carrying raft-non-associated lactase-phlorizin hydrolase. The expression of ALPK1 increases by the time of epithelial cell differentiation, whereas the intracellular localization of ALPK1 on apical transport vesicles was confirmed by confocal analysis. A phosphorylation assay on isolated SI-carrying vesicles revealed the phosphorylation of a protein band of about 105 kDa, which could be identified as the motor protein myosin I. Finally, a specific reduction of ALPK1-expression by RNA interference results in a significant decrease in the apical delivery of SI. Taken together, our data suggest that the phosphorylation of myosin I by ALPK1 is an essential process in the apical trafficking of raft-associated SI.

PMID:
15883161
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk