Send to:

Choose Destination
See comment in PubMed Commons below
Biochim Biophys Acta. 2005 Apr 15;1740(1):12-6. Epub 2005 Apr 1.

Homocysteine attenuates the expression of osteocalcin but enhances osteopontin in MC3T3-E1 preosteoblastic cells.

Author information

  • 1Department of Biochemistry, School of Dentistry, Hokkaido University, Sapporo 060, Hokkaido, Japan.


It has been pointed out that very high plasma levels of homocysteine are characteristic of homocystinuria, a rare autosomal recessive disease accompanied by the early onset of generalized osteoporosis. However, it is unclear by which mechanism hyperhomocysteine induces osteoporosis, although it is known to interfere with the formation of cross-links in collagen, an essential process in bone formation. Therefore, we investigated the effect of homcysteine on expression of osteocalcin and osteopontin in MC3T3-E1 preosteoblastic cells. Confluent cells were grown in RPMI 1640 containing 10% fetal calf serum with or without homocysteine in an atmosphere of 95% humidified air, 5% CO2 at 37 degrees C. The secretion of osteocalcin from the cells increased time-dependently until the end of culture (day 34), but 500 microM homocysteine led to an approximately 61% decrease for osteocalcin after 19 days of culture as compared with the control. On the other hand, osteopontin was not inhibited by 500 microM homocysteine but rather activated, and ranged from 134%-209% of the control level in the period from 10 days until the end of culture. From analysis of RT-PCR for mRNA of osteocalcin and osteopontin at the end of the culture, homocysteine levels of 100 and 500 microM significantly increased the expression of osteopontin mRNA with the control (p < 0.05). In contrast, the expression of osteopontin mRNA was suppressed in a dose-dependent manner, showing a mirror image of the effect on osteopontin mRNA. These findings suggest that hyperhomocystenemia appears to be an independent risk factor for osteoporosis by disturbing osteoblast function.

[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk