Send to:

Choose Destination
See comment in PubMed Commons below
Exp Cell Res. 2005 May 15;306(1):180-91. Epub 2005 Mar 19.

Activation of hypoxia-induced transcription in normoxia.

Author information

  • 1Department of Genetics and Pathology, Rudbeck Laboratory, Dag Hammarskjölds väg 20, S-751 85 Uppsala, Sweden.


Hypoxia-inducible factor-1 (HIF-1), the master regulator of transcriptional responses to reduced oxygen tension (hypoxia) in mammalian cells, consists of one HIF-1alpha and one HIF-1beta subunit. In normoxia, HIF-1alpha subunits are hydroxylated on specific proline residues; modifications that signal ubiquitination and degradation of HIF-1alpha by the proteasome. To test the effect of saturating HIF-1alpha degradation, we generated a construct, denoted the saturating domain (SD), based on a region surrounding proline 564 (Pro564) in HIF-1alpha. Expression of the SD led to accumulation of endogenous HIF-1alpha proteins in nuclei of normoxic cells. The induced HIF-1alpha was functional as it activated expression from a hypoxia-regulated reporter gene and from the endogenous vascular endothelial growth facor-a (Vegf-a) and carbonic anhydrase 9 (Ca9) genes. The effect of the SD was dependent on Pro564 since a mutated SD, in which Pro564 had been replaced by a glycine residue, failed to bind the von Hippel-Lindau protein (pVHL) and to stabilise HIF-1alpha. Treatment of cells with the prolylhydroxylase inhibitor dimethyloxalylglycine, or the proteasome inhibitor MG-132, mimicked the effect of the SD. In conclusion, we show that blocking HIF-1alpha degradation, either by saturation, or inhibition of prolyl hydroxylases or proteosomal degradation, leads to nuclear localisation of active HIF-1alpha proteins.

[PubMed - indexed for MEDLINE]

Publication Types, MeSH Terms, Substances

Publication Types

MeSH Terms


PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk