Format

Send to:

Choose Destination
See comment in PubMed Commons below
Proc Nutr Soc. 2005 Feb;64(1):15-22.

Endothelial dysfunction: role in obesity-related disorders and the early origins of CVD.

Author information

  • 1MRC Childhood Nutrition Research Centre, Institute of Child Health, London, UK. a.singhal@ich.ucl.ac.uk

Abstract

Atherosclerotic CVD is the most common cause of death in the West. Yet, its pathogenesis and early development are only partially understood. Central to the early atherosclerotic process is impairment of vascular endothelial function. Endothelial dysfunction can be measured non-invasively and is evident in children before clinical manifestations of atherosclerosis in adulthood. Factors in early life, such as conventional cardiovascular risk factors, or programming by perinatal growth and nutrition strongly affect endothelial function and hence the development of atherosclerosis and CVD. For instance, low birth weight and faster growth early in infancy have a detrimental effect on vascular structure and function. Childhood obesity, a key independent risk factor for CVD, also adversely affects early vascular health. Obesity is associated with endothelial dysfunction and greater arterial stiffness from as early as the first decade of life, while weight loss is beneficial. This effect on vascular function is probably mediated in part by low-grade inflammation and insulin resistance associated with obesity or by the production by adipose tissue of cytokine-like molecules, collectively termed adipokines. A high leptin concentration, in particular, is found in obese individuals and is strongly associated with vascular changes related to early atherosclerosis. The present review focuses on the early origins of endothelial dysfunction, emphasising the role of obesity. It also considers the mechanisms by which obesity impairs endothelial function, understanding of which will be important to further scientific knowledge and to improve public health.

PMID:
15877918
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Cambridge University Press
    Loading ...
    Write to the Help Desk