Display Settings:


Send to:

Choose Destination
Calcif Tissue Int. 2005 May;76(5):355-64. Epub 2005 May 5.

Quantification of trabecular bone structure using magnetic resonance imaging at 3 Tesla--calibration studies using microcomputed tomography as a standard of reference.

Author information

  • 1Musculoskeletal and Quantitative Imaging Research Group, Department of Radiology, University of California, San Francisco, CA, USA.


The purpose of this study is to use high-resolution magnetic resonance (MR) imaging at 3 Tesla (3T) to quantify trabecular bone structure in vitro using femoral head specimens, and to correlate the calculated structure measures with those that were determined using microcomputed tomography (microCT), the standard of reference. Fifteen cylindrical cores were obtained from fresh femoral heads after total hip arthroplasty. MR images were obtained at 3T using a transmit-receive wrist coil. High-resolution coronal images were acquired using a modified three-dimensional (3D) fast-gradient echo sequence. From these data sets two-dimensional (2D) structural parameters analogous to bone histomorphometry were derived by using both mean intercept length (MIL) methods based on the plate model and the more recent model-assumption free 3D distance-transformation (DT) methods. The parameters measured by the 2D plate model-based MIL method and the DT method included apparent (App). BV/TV (bone volume/total volume), App. Tb.Th (trabecular thickness), App. Tb.Sp (trabecular separation), and App. Tb.N (trabecular number). Identical regions of interest were analyzed in the MR images and the microCT data sets, and similar structure measures were derived. The means and standard deviations of the parameters over all slices were calculated and MR-derived measures were correlated with those derived from the microCT data sets using linear regression analyses. Structure measures were overestimated with MRI, for example, the mean App. BV/TV was 0.45 for MRI and 0.20 for microT, and the slope of the graph was 1.45. App. Tb.Th was overestimated by a factor of 1.9, whereas App. Tb.Sp was underestimated; Tb.N showed the smallest effect. Correlations between the individual parameters were excellent (App. BV/TV, r2 = 0.82; App. Tb.Sp, r2 = 0.84; App. Tb.N, r2 = 0.81), except for App.Tb.Th (r2 = 0.67). The results of this study show that trabecular bone structure measures may be obtained using 3T MR imaging. These measures, although higher than the standard of reference, show a highly significant correlation with true structure measures obtained by microCT.

[PubMed - indexed for MEDLINE]
Free PMC Article

Images from this publication.See all images (4)Free text

Fig. 1
Fig. 2
Fig. 3
Fig. 4
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Springer Icon for PubMed Central
    Loading ...
    Write to the Help Desk