Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Brain Res. 2005 May 17;1044(1):8-15. Epub 2005 Apr 13.

Minocycline inhibits oxidative stress and decreases in vitro and in vivo ischemic neuronal damage.

Author information

  • 1Department of Biofunctional Molecules, Gifu Pharmaceutical University, 5-6-1 Mitahora-higashi, Gifu 502-8585, Japan.

Abstract

The neuroprotective effects of minocycline-which is broadly protective in neurologic-disease models featuring cell death and is being evaluated in clinical trials-were investigated both in vitro and in vivo. For the in vivo study, focal cerebral ischemia was induced by permanent middle cerebral artery occlusion in mice. Minocycline at 90 mg/kg intraperitoneally administered 60 min before or 30 min after (but not 4 h after) the occlusion reduced infarction, brain swelling, and neurologic deficits at 24 h after the occlusion. For the in vitro studies, we used cortical-neuron cultures from rat fetuses in which neurotoxicity was induced by 24-h exposure to 500 microM glutamate. Furthermore, the effects of minocycline on oxidative stress [such as lipid peroxidation in mouse forebrain homogenates and free radical-scavenging activity against diphenyl-p-picrylhydrazyl (DPPH)] were evaluated to clarify the underlying mechanism. Minocycline significantly inhibited glutamate-induced cell death at 2 microM and lipid peroxidation and free radical scavenging at 0.2 and 2 microM, respectively. These findings indicate that minocycline has neuroprotective effects in vivo against permanent focal cerebral ischemia and in vitro against glutamate-induced cell death and that an inhibition of oxidative stress by minocycline may be partly responsible for these effects.

PMID:
15862784
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk