Send to:

Choose Destination
See comment in PubMed Commons below
J Am Soc Mass Spectrom. 2005 May;16(5):763-71.

Facile generation of tripeptide radical cations in vacuo via intramolecular electron transfer in Cu(II) tripeptide complexes containing sterically encumbered terpyridine ligands.

Author information

  • 1Department of Chemistry, The University of Hong Kong, Hong Kong, SAR China.


Molecular radical cations of tripeptides of the form glycylglycyl(residue X) (GGX*+) are produced by the collision-induced, intramolecular one-electron transfer of [Cu(II)(L)GGX]*2+ complexes (L = triamine ligand). We demonstrate, for the first time, the formation of molecular radical cations of all of the aliphatic, basic, aromatic, acidic, and some heteroatom-bearing GGX tripeptides, albeit inefficiently in some cases, by altering the structure of the auxiliary polyamine ligand bound to the copper atom. The design of the ligand allows exquisite control over the nature of the dissociation pathway. Steric hindrance of bulky groups in the ligand affects the binding of the peptide to the copper ion; this interaction is an important factor in determining whether the electron transfer pathway predominates.

[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Springer Icon for Elsevier Science
    Loading ...
    Write to the Help Desk