Send to:

Choose Destination
See comment in PubMed Commons below
J Insect Sci. 2004;4:21. Epub 2004 Jul 2.

The nest architecture of the Florida harvester ant, Pogonomyrmex badius.

Author information

  • 1Department of Biological Science, Florida State University, Tallahassee, FL 32306-4370, USA.


The architecture of the subterranean nests of the Florida harvester ant, Pogonomyrmex badius, was studied through excavation and casting. Nests are composed of two basic units: descending shafts and horizontal chambers. Shafts form helices with diameters of 4 to 6 cm, and descend at an angle of about 15-20 degrees near the surface, increasing to about 70 degrees below about 50 cm in depth. Superficial chambers (< 15 cm deep) appear to be modified shafts with low angles of descent, and are distinct from deeper chambers. In larger nests, they have a looping, connected morphology. Chambers begin on the outside of the helix as horizontal-floored, circular indentations, becoming multi-lobed as they are enlarged. Chamber height is about 1 cm, and does not change with area. Chamber area is greatest in the upper reaches of the nest, and decreases with depth. Vertical spacing between chambers is least in the upper reaches and increases to a maximum at about 70 to 80% of the maximum depth of the nest. The distribution of chamber area is top-heavy, with about half the total area occurring in the top quarter of the nest. Each 10% depth increment of the nest contains 25 to 40% less area than the decile above it, no matter what the size of the nest. Nests grow by simultaneous deepening, addition of new chambers and/or shafts and enlargement of existing chambers. As a result, the vertical spacing between chambers is similar at all nest sizes, and the relative distribution of chamber area with relative nest depth did not change during colony growth (that is, the size-free nest shape was the same at all colony sizes). Total chamber area increased somewhat more slowly than the population of workers excavating the nest. The branching of shafts was consistently shallow (< 40 cm), somewhat more so in large nests than small. Large colonies rarely had more than 4 shaft/chamber series. Each new series contributed less to the total chamber area because its chambers were smaller. Incipient colonies were usually 40 to 50 cm deep while mature colonies were commonly 2.5 to 3.0 m deep. Workers captured near the top of a mature nest (and therefore older) and penned in escape proof enclosures, excavated larger nests than did young workers captured from the bottom of the nest. Most of this difference was due to a larger fraction of older workers engaging in digging, rather than an increase in their rate of work. All ages of workers produced similar top-heavy nests. When different ages of workers from different levels of a mature colony were allowed to re-assort themselves in a vertical test apparatus buried in the soil, older workers moved upward to assume positions in the upper parts of the nest, much as in the colonies from which they were taken. The vertical organization of workers based on age is therefore the product of active movement and choice. A possible template imparting information on depth is a carbon dioxide gradient. Carbon dioxide concentrations increased 5-fold between the surface and the depths of the nest. A preference of young workers for high carbon dioxide concentrations, and a tendency for workers to dig more under low carbon dioxide concentrations could explain both the vertical age-distribution of workers, and the top-heaviness of the nest's architecture.

[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for PubMed Central
    Loading ...
    Write to the Help Desk