Display Settings:

Format

Send to:

Choose Destination
We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Org Biomol Chem. 2005 May 7;3(9):1659-69. Epub 2005 Apr 7.

Arginine magic with new counterions up the sleeve.

Author information

  • 1Department of Organic Chemistry, University of Geneva, Geneva, Switzerland.

Abstract

The elusive questions how arginine-rich sequences allow peptides and proteins to penetrate cells or to form voltage-gated ion channels are controversial topics of current scientific concern. The possible contributions of exchangeable counterions to these puzzling processes remain underexplored. The objective of this report is to clarify scope and limitations of certain counteranions to modulate cellular uptake and anion carrier activity of oligo/polyarginines. The key finding is that the efficiency of counteranion activators depends significantly on many parameters such as activator-membrane and activator-carrier interactions. This finding is important because it suggests that counteranions can be used to modulate not only efficiency but also selectivity. Specifically, activator efficiencies are found to increase with increasing aromatic surface of the activator, decreasing size of the transported anion, increasing carrier concentration as well as increasing membrane fluidity. Efficiency sequences depend on membrane composition with coronene > pyrene >>fullerene > calix[4]arene carboxylates in fluid and crystalline DPPC contrasting to fullerene > calix[4]arene approximately coronene > pyrene carboxylates in EYPC with or without cholesterol or ergosterol. In HeLa cells, the efficiency of planar activators (pyrene) exceeds that of spherical activators (fullerenes, calixarenes). Polyarginine complexes with pyrene and coronene activators exhibit exceptional excimer emission. Decreasing excimer emission with increasing ionic strength reveals dominant hydrophobic interactions with the most efficient carboxylate activators. Dominance of ion pairing with the inefficient high-affinity sulfate activators is corroborated by the reversed dependence on ionic strength. These findings on activator-carrier and activator-membrane interactions are discussed as supportive of arene-templated guanidinium-carboxylate pairing and interface-directed translocation as possible origins of the superb performance of higher arene carboxylates as activators.

PMID:
15858647
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Royal Society of Chemistry
    Loading ...
    Write to the Help Desk