Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 2005 Jul 1;280(26):24610-7. Epub 2005 Apr 27.

Solution structure of microtubule-associated protein light chain 3 and identification of its functional subdomains.

Author information

  • 1Faculty of Pharmaceutical Sciences, Toyama Medical and Pharmaceutical University, Toyama 930-0194, Japan.

Abstract

Microtubule-associated protein (MAP) light chain 3 (LC3) is a human homologue of yeast Apg8/Aut7/Cvt5 (Atg8), which is essential for autophagy. MAP-LC3 is cleaved by a cysteine protease to produce LC3-I, which is located in cytosolic fraction. LC3-I, in turn, is converted to LC3-II through the actions of E1- and E2-like enzymes. LC3-II is covalently attached to phosphatidylethanolamine on its C terminus, and it binds tightly to autophagosome membranes. We determined the solution structure of LC3-I and found that it is divided into N- and C-terminal subdomains. Additional analysis using a photochemically induced dynamic nuclear polarization technique also showed that the N-terminal subdomain of LC3-I makes contact with the surface of the C-terminal subdomain and that LC3-I adopts a single compact conformation in solution. Moreover, the addition of dodecylphosphocholine into the LC3-I solution induced chemical shift perturbations primarily in the C-terminal subdomain, which implies that the two subdomains have different sensitivities to dodecylphosphocholine micelles. On the other hand, deletion of the N-terminal subdomain abolished binding of tubulin and microtubules. Thus, we showed that two subdomains of the LC3-I structure have distinct functions, suggesting that MAP-LC3 can act as an adaptor protein between microtubules and autophagosomes.

PMID:
15857831
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk