Format

Send to

Choose Destination
See comment in PubMed Commons below
Lab Chip. 2005 May;5(5):536-9. Epub 2005 Mar 10.

Multi-walled carbon nanotubes for plasmid delivery into Escherichia coli cells.

Author information

  • 1Department of Nanoparticle Technology, Center of Advanced European Studies and Research, Bonn, Germany.

Abstract

Introduction of foreign genes into bacterial cells (transformation) is used for supplementing defective genes or providing additional biological functions. Transformation can be achieved using either chemical or physical methods, e.g., electroporation. Bulk electroporation offers several advantages over chemical methods, including high transformation efficiency, but its application is limited due to the high numbers of cells and plasmids needed as a result of the high death rate of cells during this process, and the difficulty in electroporating single cells. Synthetic inorganic gene nanocarriers have received limited attention in the transformation of bacterial cells. Here we present a plasmid delivery system based on water dispersible multi-walled carbon nanotubes (CNTs) that can simultaneously target the bacterial surface and deliver the plasmids into the cells via temporary nanochannels across the cell envelope. Transformation experiments performed on E. coli provide evidence for the high potential of CNTs for nanoscale cell electroporation.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Royal Society of Chemistry
    Loading ...
    Write to the Help Desk