Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 2005 Jul 15;280(28):26383-96. Epub 2005 Apr 26.

Mitochondrial Dok-4 recruits Src kinase and regulates NF-kappaB activation in endothelial cells.

Author information

  • 1Center for Cardiovascular Research, University of Rochester, Rochester, New York 14642, USA.

Abstract

The downstream of kinase (Dok) family of adapter proteins consists of at least five members structurally characterized by an NH2-terminal tandem of conserved pleckstrin homology and phosphotyrosine binding domains linked to a unique COOH-terminal region. To determine the role of the novel adapter protein Dok-4 in endothelial cells, we first investigated the cell localization of Dok-4. Most surprisingly, immunofluorescence microscopy, cell fractionation studies, and studies with enhanced green fluorescent protein chimeras showed that wild type Dok-4 (Dok-4-WT) specifically localized in mitochondria. An NH2-terminal deletion mutant of Dok-4 (Dok-4-(deltaN11-29)), which lacks the mitochondrial targeting sequence, could not accumulate in mitochondria. Co-immunoprecipitation revealed an interaction of c-Src with Dok-4-WT in endothelial cells. Most interestingly, overexpression of Dok-4-WT, but not Dok-4-(deltaN1-99), increased mitochondrial c-Src expression, whereas knock-down of endogenous Dok-4 with a small interfering RNA vector greatly inhibited mitochondrial localization of c-Src, suggesting a unique function for Dok-4 as an anchoring protein for c-Src in mitochondria. Dok-4-WT significantly decreased 39-kDa subunit complex I expression. PP2, a specific Src kinase inhibitor, prevented the Dok-4-mediated complex I decrease, suggesting the involvement of Src kinase in regulation of complex I expression. Dok-4-WT enhanced tumor necrosis factor-alpha (TNF-alpha)-mediated reactive oxygen species (ROS) production, supporting the functional relevance of a Dok-4-Src-complex I/ROS signaling pathway in mitochondria. Finally, Dok-4 enhanced TNF-alpha-mediated NF-kappaB activation, whereas this was inhibited by transfection with Dok-4 small interfering RNA. In addition, Dok-4-induced NF-kappaB activation was also inhibited by transfection of a dominant negative form of c-Src. These data suggest a role for mitochondrial Dok-4 as an anchoring molecule for the tyrosine kinase c-Src, and in turn as a regulator of TNF-alpha-mediated ROS production and NF-kappaB activation.

PMID:
15855164
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk