Display Settings:

Format

Send to:

Choose Destination
Microb Cell Fact. 2005 Apr 22;4(1):11.

Sequence determinants of protein aggregation: tools to increase protein solubility.

Author information

  • Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Bellaterra (Barcelona), Spain. salvador.ventura@uab.es.

Abstract

Escherichia coli is one of the most widely used hosts for the production of recombinant proteins. However, very often the target protein accumulates into insoluble aggregates in a misfolded and biologically inactive form. Bacterial inclusion bodies are major bottlenecks in protein production and are hampering the development of top priority research areas such structural genomics. Inclusion body formation was formerly considered to occur via non-specific association of hydrophobic surfaces in folding intermediates. Increasing evidence, however, indicates that protein aggregation in bacteria resembles to the well-studied process of amyloid fibril formation. Both processes appear to rely on the formation of specific, sequence-dependent, intermolecular interactions driving the formation of structured protein aggregates. This similarity in the mechanisms of aggregation will probably allow applying anti-aggregational strategies already tested in the amyloid context to the less explored area of protein aggregation inside bacteria. Specifically, new sequence-based approaches appear as promising tools to tune protein aggregation in biotechnological processes.

PMID:
15847694
[PubMed - as supplied by publisher]
PMCID:
PMC1087874
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for BioMed Central Icon for PubMed Central
    Loading ...
    Write to the Help Desk