Send to:

Choose Destination
See comment in PubMed Commons below
FEBS J. 2005 Apr;272(8):1886-99.

A novel hyperthermostable 5'-deoxy-5'-methylthioadenosine phosphorylase from the archaeon Sulfolobus solfataricus.

Author information

  • 1Dipartimento di Biochimica e Biofisica F. Cedrangolo, Seconda Universit√† di Napoli, Italy.


We report herein the first molecular characterization of 5'-deoxy-5'-methylthio-adenosine phosphorylase II from Sulfolobus solfataricus (SsMTAPII). The isolated gene of SsMTAPII was overexpressed in Escherichia coli BL21. Purified recombinant SsMTAPII is a homohexamer of 180 kDa with an extremely low Km (0.7 microm) for 5'-deoxy-5'-methylthioadenosine. The enzyme is highly thermophilic with an optimum temperature of 120 degrees C and extremely thermostable with an apparent Tm of 112 degrees C that increases in the presence of substrates. The enzyme is characterized by high kinetic stability and remarkable SDS resistance and is also resistant to guanidinium chloride-induced unfolding with a transition midpoint of 3.3 m after 22-h incubation. Limited proteolysis experiments indicated that the only one proteolytic cleavage site is localized in the C-terminal region and that the C-terminal peptide is necessary for the integrity of the active site. Moreover, the binding of 5'-deoxy-5'-methylthioadenosine induces a conformational transition that protected the enzyme against protease inactivation. By site-directed mutagenesis we demonstrated that Cys259, Cys261 and Cys262 play an important role in the enzyme stability since the mutants C259S/C261S and C262S show thermophilicity and thermostability features significantly lower than those of the wild-type enzyme. In order to get insight into the physiological role of SsMTAPII a comparative kinetic analysis with the homologous 5'-deoxy-5'-methylthioadenosine phosphorylase from Sulfolobus solfataricus (SsMTAP) was carried out. Finally, the alignment of the protein sequence of SsMTAPII with those of SsMTAP and human 5'-deoxy-5'-methylthioadenosine phosphorylase (hMTAP) shows several key residue changes that may account why SsMTAPII, unlike hMTAP, is able to recognize adenosine as substrate.

[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Blackwell Publishing
    Loading ...
    Write to the Help Desk